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Abstract
The enzyme FabH catalyzes the initial step of fatty acid biosynthesis via a type II fatty acid synthase. The pivotal role of this
essential enzyme combined with its unique structural features and ubiquitous occurrence in bacteria has made it an attractive
new target for the development of antibacterial and antiparasitic compounds. Predictive hologram quantitative structure
activity relationship (HQSAR) model was developed for a series of benzoylamino benzoic acid derivatives acting as FabH
inhibitor. The best HQSAR model was generated using atoms and bond types as fragment distinction and 4–7 as fragment
size showing cross-validated q 2 value of 0.678 and conventional r 2 value of 0.920. The predictive ability of the model was
validated by an external test set of 6 compounds giving satisfactory predictive r 2 value of 0.82. The contribution maps
obtained from this model were used to explain the individual atomic contributions to the overall activity. It was confirmed
from the contribution map that both ring A and ring C play a vital role for activity. Moreover hydroxyl substitution in the ortho
position of ring A is favorable for better inhibitory activity. Therefore the information derived from the contribution map can
be used to design potent FabH inhibitors.
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Introduction

Fatty acid biosynthesis, the first stage in membrane

lipid biogenesis, is carried out by two different fatty

acid synthase (FAS) systems in bacteria, plants and

animals [1]. In the type I system of animals, including

humans, FAS is a single multifunctional polypeptide

that catalyzes all the reactions in the elongation

pathway [1,2]. On the other hand, in the type II

systems of bacteria [3], plants [4], and protozoa [5],

fatty acid synthesis is catalyzed by a series of small,

soluble proteins that are each encoded by a discrete

gene existing as separate proteins. The ubiquitous

type II fatty acid synthase (FAS) in bacteria is not only

essential to cell survival but also exhibits structural

and organizational differences from that in higher

organisms, such as humans. Thus, the bacterial fatty

acid synthesis pathway offers several unique targets for

selective inhibition by chemotherapeutic agents.

Among the FAS II system enzymes FabH, a b-keto-

acyl-ACP synthase is found both in gram positive and

negative bacteria. FabH performs a critical role in the

regulation of the entire pathway by catalyzing the

condensation of malonyl-ACP with acetyl-CoA. In

addition FabH is structurally distinct and its active site

residues are also conserved in different bacterial

species [6]. So the successful development of novel

and broad-spectrum FabH inhibitors would add a new

antibacterial to the shrinking arsenal of antibiotics

available to combat against the infections by resistant

organism.

QSAR techniques have proven to be extremely

valuable in pharmaceutical research to create pre-

dictive models as a valuable tool to facilitate the

discovery of enzyme inhibitors [7,8]. HQSAR [9] has

several potential advantages over existing methods for

QSAR. It avoids not only the need for molecular
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alignment and conformation specification inherent in

CoMFA [10] and CoMSIA [11] but also the selection

and calculation or measurement of the physicochem-

ical descriptors required by classical QSAR. By

removing the necessity for molecular alignment,

models by HQSAR can be obtained more rapidly

than other techniques. It makes HQSAR readily

applicable on large datasets, such as combinatorial

libraries or database subsets that are not amenable to

analysis by existing QSAR methods. In our previous

study [12] we developed a 3D QSAR model for a set of

benzoylaminobenzoic acid derived FabH inhibitors

and superimposed the contour map into the active site

of FabH to find out important amino acid residues

responsible for ligand binding. Here we have

conducted the HQSAR study using the same training

and test set to explore individual atomic contribution

to molecular bioactivity with visual display of active

centers in a compound, i.e., a display of the fragments

that most likely contribute to the compound’s activity.

The results of this study can provide some clues about

which new compounds to synthesize, or what possible

chemical modifications should bring in existing

(tested) compounds. Moreover this can also be

employed as a predictive model to virtually screen a

library of potential candidate compounds.

Materials and methods

Data sets

Forty-three molecules selected for the present study

were taken from the published work by Zhe Nie et al.

[6]. The structures of the compounds and their

biological data are given in Table I–III. The 2D

QSAR models were generated using a training set of

37 molecules and predictive power of the resulting

models was evaluated using a test set of six molecules

(Table I–III marked with *). The test compounds

were selected manually such that the structural

diversity and wide range of activity in the data set

were included. The biological activity used in the

present study was expressed as

pIC50 ¼ 2log IC50 ð1Þ

where IC50 is the concentration (mM) of the inhibitor

producing 50% inhibition of Entercoccus faecalis FabH.

pIC50 values were used as dependent variables in the

HQSAR analysis.

HQSAR analysis

The input data set for HQSAR analysis consists of the

2D chemical structures [13] and their associated

biological data. HQSAR analysis involves three main

steps: the generation of substructural fragments for

each of the molecules in the training set; the encoding

of these fragments in holograms; and correlation of the

latter with the available biological data. For this

purpose we used the novel molecular hologram

representation devised by Tripos associates as gener-

ated by the HQSAR package [14].

The input molecule is broken into all possible

structural fragments (including branched, cyclic, and

overlapping fragments) containing user defined

minimum (M) and maximum (N) number of atoms.

Each unique fragment in the dataset is assigned a

specific large integer by means of cyclic redundancy

check (CRC) algorithm. Each of these integers

corresponds to a bin in an integer array of fixed length

L (L is generally in the range 50–500). Bin

occupancies are incremented according to the frag-

ments generated. Thus, all generated fragments are

hashed [15] into array bins in the range 1 to L. This

array is called molecular hologram, [16] and bin

occupancies are the descriptor variables. The use of

hashing greatly reduces the size of molecular hologram

but leads to a phenomenon called ‘fragment collision’.

During fragment generation, identical fragments are

always hashed to same bin, and the corresponding

occupancy for that bin is incremented. However, as

the hologram length is generally smaller than the total

number of unique fragments, different unique frag-

ments can hash to the same bin causing ‘collision’

between fragments. In order to reduce the probability

of identical or similar fragment collisions occurring,

values of L are selected to be prime numbers (default

values of which are 53, 59, 61, 71, 83, 97, 151, 199,

257, 307, 353, and 401). Computation of the

molecular holograms for a dataset of structures yields

a data matrix of dimension R £ L, where R is the

number of compounds in the training set and L is the

length of the molecular hologram. Standard PLS

analysis is then applied to identify a set of orthogonal

explanatory variables (components) that are linear

combinations of the original L variables. Leave one

out [17] and cross-validation is applied to determine

the number of components that yield an optimally

predictive model. Once an optimal model is identified,

PLS yields a mathematical equation that relates the

molecular hologram bin values to the corresponding

biological activity of each compound in the data set.

Activityi ¼ co þ SLcilxil ð2Þ

Where xil is the occupancy value of the molecular

hologram of compound i at position or bin l, cil is the

coefficient for that bin derived from the PLS analysis,

L is the length of the hologram, Activityi is the

biological activity, and co is a constant.

HQSAR contribution maps

The results of the HQSAR analysis is graphically

displayed as a color-coded structure diagram in which

the color of each atom reflects the contribution of that

A. Ashek et al.8
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Table I. Diethyl sulfonamide and [3-phenoxybenzoylamino] benzoic acid derivatives as inhibitors of FabH.

Structure

ID R1 R2 R3 R4 PIC50

1 F H H 5.08

2* Br H H 5.80

3 Ph H H 5.80

4* Br Me H 3.80

5 OMe H H 4.94

6 H H 5.66

7 H H 5.21

8 H H 5.68

9 H H H 5.57

10 F H H 5.42

Study of b-ketoacyl-acyl carrier protein synthase III (FabH) 9
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Table I – continued

Structure

ID R1 R2 R3 R4 PIC50

11 Br H H 4.96

12 H H 4.6

13 H H 4.42

14 H H 5.49

15 H H 5.92

16 H H 6.54

17 H H 6.57

18 H H 4.66

19 H H 6.96

20 H H 7.25

21 Br H OH 7.21

A. Ashek et al.10
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atom to the molecules overall activity. The colors at

the red end of the spectrum (red, red–orange, and

orange) reflect poor (or negative) contributions, while

colors at the green end (yellow, green–blue, and

green) reflect favorable (positive) contributions.

Atoms with intermediate contributions are colored

white. By default, HQSAR specifies the maximal

common structure (MCS) based on the similar

backbone present in all of the compounds from the

training set and denoted by cyan color. It should be

noted that the contribution to activity of the atoms

involved in MCS were ignored since the template is

common to all structures and thus, does not provide a

distinguishing feature among the compounds in the

dataset.

Predictive r squared (r 2 pred )

To validate the derived HQSAR models, biological

activities of an external test set were predicted using

models derived from the training set. The predictive

ability of the models is expressed by predictive r 2

value, which is analogous to cross-validated r 2 (q 2)

and is calculated by using the formula

r2
pred ¼

SD 2 PRESS

SD
ð3Þ

where SD is the sum of squared deviation between the

biological activities of the test set molecule and the

mean activity of the training set molecules and PRESS

is the sum of squared deviations between the observed

and the predicted activities of the test molecules.

Result and discussion

HQSAR investigation was performed using the

following fragment distinctions: atoms (A), bonds

(B), connections (C), hydrogen atoms (H) and donor

and acceptor (DA). Several combinations of these

parameters were considered using the default frag-

ment size (4–7), as follows: A/B, A/B/C, A/B/C/H,

and A/C/DA. HQSAR analysis was performed over

the 12 default series of hologram lengths of 53, 59, 61,

71, 83, 97, 151, 199, 257, 307, 353, and 401 bins and

optimum number of components (LV) were selected

Table II. Aromatic substitutions on the para position of [3-phenoxy-

benzoylamino] benzoic acid derivatives as inhibitors of FabH.

Structure

ID R1 R2 PIC50

22 CF3 H 7.02

23 Me H 6.80

24 CO2H H 5.68

25 OH H 6.39

26 OEt H 6.66

27 SO2Me H 7.55

28 OCF3 H 6.33

29* iPr H 6.10

30 3-Me–4-F H 6.62

31 2,4-di-F H 6.80

32 3,4-di-F H 6.48

33 3-Me–4-Cl H 6.60

34* 3-Cl–4-F H 6.24

35 H OH 8.40

Table III. Ring A and C modified [3-Phenoxybenzoylamino]

benzoic acid derivatives as inhibitors of FabH.

Structure

ID A C PIC50

36 Ph 5.00

37 Ph 4.37

38 Ph 5.22

39 Ph 6.39

40 Ph 4-Pyr 5.00

41 Ph 3-CO2H-Ph 5.43

42 Ph 4-CO2H-Ph 5.36

43 Ph 4-F-Ph 5.30

Study of b-ketoacyl-acyl carrier protein synthase III (FabH) 11
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based on the PLS analyses that gave the least cross-

validated standard error SEcv. The results of HQSAR

analyses for the 37 training set compounds using

several fragment distinction combinations are sum-

marized in Table IV. The best model was generated

using atoms and bond types as fragment distinction

showing cross-validated r 2(q 2) value of 0.678 and

noncross-validated r 2 value of 0.92. We have tried to

find a better model using other fragment lengths.

Thus here we have repeated the analysis with different

fragment sizes using the best fragment distinction

obtained from previous step to check its influence on

key statistical parameters. The statistical results for

the different fragment sizes evaluated (2–5, 3–6, 4–7,

5–8, 6–9, and 7–10) are summarized in Table V. Still

the best statistical result was obtained with the

fragment size 4–7. Like other QSAR techniques

HQSAR can also be used to predict the activity of

structurally related inhibitors from its fingerprint. The

predictive ability of the best HQSAR model derived

using the 37 training set molecules was validated by

predicting pIC50 values for external test set of 6

compounds (marked asterisk in Table I–III), giving

satisfactory predictive r 2 value of 0.82. The observed

and predictive activities of both training set and test set

were shown in Table VI. All compound of the test were

fairly predicted with residual values less than one log

unit. Figure 1 shows the graph of observed versus

predicted activities of both training set and test set.

Besides predicting the activities of untested mole-

cules, the QSAR model plays an important role to

provide hints about the relation of different molecular

fragments to biological activity. In HQSAR, the model

is graphically represented in the form of contribution

maps where the color of each atom reflects the

contribution of that atom to the molecule’s overall

activity. From a discussion point of view, the most

important fragments of the compound 35 (the most

potent inhibitor of the data set) are shown in Figure 2.

It is seen from the contribution map that the ring A

has a favorable contribution to the activity. This is

supported from the fact that when benzene ring is

replaced by thiophene ring (36, 37) it loses potency.

But the ortho carbon of ring A was found red or

orange–red in compound 12, 13 and 28 (Figure 3)

whereas in the rest of the compounds it had positive or

neutral contribution to the activity. Interestingly when

the hydrogen of this ortho carbon was substituted by

hydroxyl group (in compound 35 and 39) it showed

Table IV. HQSAR analyses for various fragment distinctions using

default fragment size (4–7); (LVmax ¼ 8).

Fragment

distinction q 2 SEcv r 2 SEE LV Length

A/B .678 .573 .920 .285 5 151

A/B/C .621 .621 .932 .264 5 307

A/B/C/H .493 .719 .793 .460 5 97

A/C/DA .622 .611 .846 .390 4 71

Table V. HQSAR analysis for the influence of various fragment

sizes using the best fragment distinction (A/B).

Fragment size q 2 SEcv r 2 SEE LV Length

2–5 .674 .558 .932 .263 5 401

3–6 .677 .579 .915 .295 5 83

4–7 .679 .573 .938 .269 6 53

5–8 .588 .648 .916 .293 5 257

6–9 .621 .622 .922 .282 5 401

7–10 .645 .603 .923 .280 5 401

Table VI. Experimental activities (PIC50) and predicted activities

(PA) with residuals (D) by HQSAR.

HQSAR

Compound PIC50 PA D

1 5.08 5.22 20.14

2* 5.80 5.61 0.19

3 5.80 5.85 20.05

4* 3.80 3.52 0.28

5 4.94 4.83 0.11

6 5.66 5.87 20.21

7 5.21 4.99 0.22

8 5.68 5.57 0.11

9 5.57 5.51 0.06

10 5.42 5.43 0.01

11* 4.96 5.16 20.20

12 4.60 4.47 0.13

13 4.42 4.32 0.10

14 5.49 5.86 20.37

15 5.92 5.94 20.02

16 6.54 6.23 0.31

17 6.57 6.85 20.28

18 4.66 4.68 20.02

19 6.96 6.33 0.63

20* 7.25 6.78 0.47

21 7.21 7.11 0.10

22 7.02 6.87 0.15

23 6.80 6.61 0.19

24 5.68 6.28 20.60

25 6.39 6.97 20.58

26 6.66 6.75 20.09

27 7.55 7.54 0.01

28 6.33 6.20 0.13

29* 6.10 6.93 20.83

30 6.62 6.63 20.01

31 6.80 6.87 20.07

32 6.48 6.60 20.12

33 6.60 6.74 20.14

34* 6.24 6.86 20.62

35 8.40 7.73 0.67

36 5.00 5.08 20.08

37 4.37 4.58 2 .021

38 5.22 5.54 20.32

39 6.39 6.45 20.06

40 5.00 4.95 0.05

41 5.43 5.22 0.21

42 5.36 4.98 0.38

43 5.30 5.43 0.13
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a positive contribution (Figure 2). So our HQSAR

contribution map recommends the placement of a

hydroxyl group in ortho carbon of ring A for better

activity.

From the contribution map of compound 35 we can

tell that the green colored ring C is also important for

activity. This is in agreement with the fact that the

inhibitory activities of the compounds 10 and 20 with

phenoxy are higher than those of their diethyl

sulfonamide derivatives, compound 1 and 3. Along

with these regions, the presence of yellow color in

ortho and meta carbon of ring D in Figure 2 indicates

its positive contribution to activity. The result is

consistent with the fact that when the para position of

the ring B is substituted by phenyl it shows greater

activity. This can be seen with compound 20 in which

the incorporation of phenyl group in the para position

of ring B results in an increase of activity as compared

to compound 9. Although HQSAR results are subject

to chance correlation, the information obtained from

these contribution maps can be used for further

development of FabH inhibitors.

Conclusion

Here we have applied the principle of HQSAR analysis

to study the 2D QSAR of benzoylamino benzoic acid

derivatives as FabH inhibitors. The model developed

after optimizing the atom and bond type parameters

possesses both good internal and external consistency,

which indicates that this model is statistically robust

with good correlative and predictive power. Moreover

the contribution maps obtained from this model was

used to explain the individual contribution of the

atoms to the overall activity of the compound.

It identified rings A and C as positive contributors

for activity and evaluated the presence of o-hydroxyl as

critical for activity. Thus this study can contribute to

the design of structurally related FabH inhibitors.

Figure 1. Correlation between the observed and the predicted

activities (pIC50).

Figure 2. Contribution map of compound 35 (see colour online).

Figure 3. Negative contribution of ring A ortho carbon of compound 12, 13 and 28 (see colour online).

Study of b-ketoacyl-acyl carrier protein synthase III (FabH) 13
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